201 lines
6.2 KiB
C++
201 lines
6.2 KiB
C++
//Constants
|
|
const int MOTOR_SATURATION = round(pow(2, PWM_RESOLUTION));
|
|
const float BASE_WIDTH = 0.1837;
|
|
const float WHEEL_DIAMETER = 0.0677;
|
|
const float PULSES_PER_TURN = 1320.0;
|
|
const float BALANCE_POINT = 0.05;
|
|
const float SPEED_REFERENCE = 0.0;
|
|
const float DEADBAND_M1_POS = 90.0;
|
|
const float DEADBAND_M1_NEG = 90.0;
|
|
const float DEADBAND_M2_POS = 90.0;
|
|
const float DEADBAND_M2_NEG = 90.0;
|
|
|
|
|
|
//Tuning
|
|
const float K_SC = 20.0;
|
|
const float K_OL = 13.0;
|
|
const float K_IL = 90.0;
|
|
const float I_IL = 5.5;
|
|
const float filter_gain = 15.0;
|
|
|
|
|
|
//Help variables
|
|
float M1_Lin_Vel, M2_Lin_Vel;
|
|
float M1_Ang_Vel, M2_Ang_Vel;
|
|
float botLinVel , botAngVel ;
|
|
int Speed_CMD, M1_Speed_CMD, M2_Speed_CMD;
|
|
float ref_SC, act_SC, error_SC, SC_cont_out;
|
|
float ref_OL, act_OL, error_OL, OL_cont_out;
|
|
float ref_IL, act_IL, error_IL, iError_IL;
|
|
|
|
|
|
|
|
|
|
void initMotors() {
|
|
// float temp[] = {WHEEL_DIAMETER / 4, WHEEL_DIAMETER / 4, (WHEEL_DIAMETER / 2) / BASE_WIDTH, -(WHEEL_DIAMETER / 2) / BASE_WIDTH};
|
|
// int k = 0;
|
|
// for (int i = 0; i < 2; i++)
|
|
// {
|
|
// for (int j = 0; j < 2; j++)
|
|
// {
|
|
// inv_Kin[i][j] = temp[k];
|
|
// k = k + 1;
|
|
// }
|
|
// }
|
|
|
|
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
|
|
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
|
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
|
|
inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
|
|
|
Matrix.Print((mtx_type*)inv_Kin, 2, 2, "Inverse kinematic matrix");
|
|
}
|
|
|
|
void motors() {
|
|
|
|
|
|
// Speed Controller
|
|
ref_SC = SPEED_REFERENCE;
|
|
act_SC = vel_Matrix[0][0];
|
|
error_SC = ref_SC - act_SC;
|
|
SC_cont_out = error_SC * K_SC;
|
|
|
|
|
|
// Balance controller
|
|
// Outer loop
|
|
ref_OL = BALANCE_POINT - SC_cont_out;
|
|
act_OL = pitch;
|
|
error_OL = ref_OL - act_OL;
|
|
OL_cont_out = error_OL * K_OL;
|
|
// Inner loop
|
|
ref_IL = OL_cont_out;
|
|
act_IL = pitch_rate;
|
|
error_IL = ref_IL - act_IL;
|
|
iError_IL = iError_IL + (error_IL * dT_s * I_IL);
|
|
Speed_CMD = round((error_IL * K_IL) + iError_IL);
|
|
|
|
M1_Speed_CMD = Speed_CMD;
|
|
M2_Speed_CMD = Speed_CMD;
|
|
|
|
// M1_Speed_CMD = 500;
|
|
// M2_Speed_CMD = 500;
|
|
|
|
//Calculate speed from encoders
|
|
M1_Lin_Vel = encoderReaderLinVel(m1Raw, m1RawLast, M1_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
M2_Lin_Vel = encoderReaderLinVel(m2Raw, m2RawLast, M2_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
M1_Ang_Vel = encoderReaderAngVel(m1Raw, m1RawLast, M1_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
M2_Ang_Vel = encoderReaderAngVel(m2Raw, m2RawLast, M2_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
|
|
motor_ang_vel[0][0] = M1_Ang_Vel;
|
|
motor_ang_vel[1][0] = M2_Ang_Vel;
|
|
|
|
|
|
//void MatrixMath::Multiply(mtx_type* A, mtx_type* B, int m, int p, int n, mtx_type* C)
|
|
//{
|
|
// A = input matrix (m x p)
|
|
// B = input matrix (p x n)
|
|
// m = number of rows in A
|
|
// p = number of columns in A = number of rows in B
|
|
// n = number of columns in B
|
|
// C = output matrix = A*B (m x n)
|
|
|
|
|
|
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
|
|
|
|
|
|
//Motor control
|
|
motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
|
|
motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
|
|
|
|
|
|
// Serial plotter
|
|
// Serial.print("Balance_Point:");
|
|
// Serial.print(ref_OL);
|
|
// Serial.print(" ");
|
|
// Serial.print("Pitch_Angle:");
|
|
// Serial.print(act_OL);
|
|
// Serial.print(" ");
|
|
// Serial.print("Speed_CMD:");
|
|
// Serial.println(Speed_CMD * (100.0 / 4096.0));
|
|
|
|
|
|
Serial.print("M1_Ang_Vel:");
|
|
Serial.print(M1_Ang_Vel);
|
|
Serial.print(" ");
|
|
Serial.print("M2_Ang_Vel:");
|
|
Serial.print(M2_Ang_Vel);
|
|
Serial.print(" ");
|
|
Serial.print("botLinVel:");
|
|
Serial.print(vel_Matrix[0][0]);
|
|
Serial.print(" ");
|
|
Serial.print("botAngVel:");
|
|
Serial.println(vel_Matrix[1][0]);
|
|
|
|
|
|
//Update variables for next scan cycle
|
|
m1RawLast = m1Raw;
|
|
m2RawLast = m2Raw;
|
|
|
|
// Serial.print("m1Raw:");
|
|
// Serial.print(m1Raw);
|
|
// Serial.print(" ");
|
|
// Serial.print("m2Raw:");
|
|
// Serial.println(m2Raw);
|
|
|
|
}
|
|
|
|
float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) {
|
|
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
|
|
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
|
|
float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_);
|
|
return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * filt_gain_);
|
|
}
|
|
|
|
float encoderReaderAngVel(int encRaw, int encRawLast, float ang_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) {
|
|
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
|
|
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
|
|
float ang_vel_ = (dTurn_ * 2 * PI) / (dT_);
|
|
return ang_vel_filtered_ + ((ang_vel_ - ang_vel_filtered_) * dT_ * filt_gain_);
|
|
}
|
|
|
|
void motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) {
|
|
//Calculate channel
|
|
byte ch1 = motorID * 2 - 1;
|
|
byte ch2 = motorID * 2;
|
|
|
|
|
|
//Deadband
|
|
if (speedCMD_ > 0 && speedCMD_ < dbPos_) {
|
|
speedCMD_ = dbPos_;
|
|
}
|
|
else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) {
|
|
speedCMD_ = -dbNeg_;
|
|
}
|
|
|
|
// Speed command saturation
|
|
else if (speedCMD_ > saturation) {
|
|
speedCMD_ = saturation;
|
|
}
|
|
else if (speedCMD_ < -saturation) {
|
|
speedCMD_ = -saturation;
|
|
}
|
|
|
|
else {
|
|
speedCMD_ = speedCMD_;
|
|
}
|
|
|
|
//Apply speed command to PWM output
|
|
if (speedCMD_ > 0) {
|
|
ledcWrite(ch1, 0);
|
|
ledcWrite(ch2, speedCMD_);
|
|
}
|
|
else if (speedCMD_ < 0) {
|
|
ledcWrite(ch1, -1 * speedCMD_);
|
|
ledcWrite(ch2, 0);
|
|
}
|
|
else if (speedCMD_ == 0) {
|
|
ledcWrite(ch1, 0);
|
|
ledcWrite(ch2, 0);
|
|
}
|
|
}
|