//Constants const int MOTOR_SATURATION = round(pow(2, PWM_RESOLUTION)); const float BASE_WIDTH = 0.1837; const float WHEEL_DIAMETER = 0.0677; const float PULSES_PER_TURN = 1320.0; const float BALANCE_POINT = 0.05; const float SPEED_REFERENCE = 0.0; const float DEADBAND_M1_POS = 90.0; const float DEADBAND_M1_NEG = 90.0; const float DEADBAND_M2_POS = 90.0; const float DEADBAND_M2_NEG = 90.0; //Tuning const float K_SC = 20.0; const float K_OL = 13.0; const float K_IL = 90.0; const float I_IL = 5.5; const float filter_gain = 15.0; //Help variables float M1_Lin_Vel, M2_Lin_Vel; float M1_Ang_Vel, M2_Ang_Vel; float botLinVel , botAngVel ; int Speed_CMD, M1_Speed_CMD, M2_Speed_CMD; float ref_SC, act_SC, error_SC, SC_cont_out; float ref_OL, act_OL, error_OL, OL_cont_out; float ref_IL, act_IL, error_IL, iError_IL; void initMotors() { // float temp[] = {WHEEL_DIAMETER / 4, WHEEL_DIAMETER / 4, (WHEEL_DIAMETER / 2) / BASE_WIDTH, -(WHEEL_DIAMETER / 2) / BASE_WIDTH}; // int k = 0; // for (int i = 0; i < 2; i++) // { // for (int j = 0; j < 2; j++) // { // inv_Kin[i][j] = temp[k]; // k = k + 1; // } // } inv_Kin[0][0] = WHEEL_DIAMETER / 4; inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH; inv_Kin[0][1] = WHEEL_DIAMETER / 4; inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH; Matrix.Print((mtx_type*)inv_Kin, 2, 2, "Inverse kinematic matrix"); } void motors() { // Speed Controller ref_SC = SPEED_REFERENCE; act_SC = vel_Matrix[0][0]; error_SC = ref_SC - act_SC; SC_cont_out = error_SC * K_SC; // Balance controller // Outer loop ref_OL = BALANCE_POINT - SC_cont_out; act_OL = pitch; error_OL = ref_OL - act_OL; OL_cont_out = error_OL * K_OL; // Inner loop ref_IL = OL_cont_out; act_IL = pitch_rate; error_IL = ref_IL - act_IL; iError_IL = iError_IL + (error_IL * dT_s * I_IL); Speed_CMD = round((error_IL * K_IL) + iError_IL); M1_Speed_CMD = Speed_CMD; M2_Speed_CMD = Speed_CMD; // M1_Speed_CMD = 500; // M2_Speed_CMD = 500; //Calculate speed from encoders M1_Lin_Vel = encoderReaderLinVel(m1Raw, m1RawLast, M1_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); M2_Lin_Vel = encoderReaderLinVel(m2Raw, m2RawLast, M2_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); M1_Ang_Vel = encoderReaderAngVel(m1Raw, m1RawLast, M1_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); M2_Ang_Vel = encoderReaderAngVel(m2Raw, m2RawLast, M2_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); motor_ang_vel[0][0] = M1_Ang_Vel; motor_ang_vel[1][0] = M2_Ang_Vel; //void MatrixMath::Multiply(mtx_type* A, mtx_type* B, int m, int p, int n, mtx_type* C) //{ // A = input matrix (m x p) // B = input matrix (p x n) // m = number of rows in A // p = number of columns in A = number of rows in B // n = number of columns in B // C = output matrix = A*B (m x n) Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix); //Motor control motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG); motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG); // Serial plotter // Serial.print("Balance_Point:"); // Serial.print(ref_OL); // Serial.print(" "); // Serial.print("Pitch_Angle:"); // Serial.print(act_OL); // Serial.print(" "); // Serial.print("Speed_CMD:"); // Serial.println(Speed_CMD * (100.0 / 4096.0)); Serial.print("M1_Ang_Vel:"); Serial.print(M1_Ang_Vel); Serial.print(" "); Serial.print("M2_Ang_Vel:"); Serial.print(M2_Ang_Vel); Serial.print(" "); Serial.print("botLinVel:"); Serial.print(vel_Matrix[0][0]); Serial.print(" "); Serial.print("botAngVel:"); Serial.println(vel_Matrix[1][0]); //Update variables for next scan cycle m1RawLast = m1Raw; m2RawLast = m2Raw; // Serial.print("m1Raw:"); // Serial.print(m1Raw); // Serial.print(" "); // Serial.print("m2Raw:"); // Serial.println(m2Raw); } float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) { float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle] float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation] float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_); return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * filt_gain_); } float encoderReaderAngVel(int encRaw, int encRawLast, float ang_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) { float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle] float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation] float ang_vel_ = (dTurn_ * 2 * PI) / (dT_); return ang_vel_filtered_ + ((ang_vel_ - ang_vel_filtered_) * dT_ * filt_gain_); } void motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) { //Calculate channel byte ch1 = motorID * 2 - 1; byte ch2 = motorID * 2; //Deadband if (speedCMD_ > 0 && speedCMD_ < dbPos_) { speedCMD_ = dbPos_; } else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) { speedCMD_ = -dbNeg_; } // Speed command saturation else if (speedCMD_ > saturation) { speedCMD_ = saturation; } else if (speedCMD_ < -saturation) { speedCMD_ = -saturation; } else { speedCMD_ = speedCMD_; } //Apply speed command to PWM output if (speedCMD_ > 0) { ledcWrite(ch1, 0); ledcWrite(ch2, speedCMD_); } else if (speedCMD_ < 0) { ledcWrite(ch1, -1 * speedCMD_); ledcWrite(ch2, 0); } else if (speedCMD_ == 0) { ledcWrite(ch1, 0); ledcWrite(ch2, 0); } }