BalanceBot/motorControl.ino

153 lines
4.9 KiB
C++

void initMotors() {
// Inverse Kinematic matrix of differential drive robot
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH;
}
void motors() {
if (Ps3.data.button.cross) {
ResetIntegrators();
balancingOn = true;
}
if (Ps3.data.button.circle) {
balancingOn = false;
}
if (Ps3.data.button.triangle) {
ResetIntegrators();
}
if (Ps3.data.button.square) {
IMU.init();
}
//Calculate wheel angular velocity
motor_ang_vel[0][0] = encoderReaderAngVel(m1Raw, m1RawLast, motor_ang_vel[0][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
motor_ang_vel[1][0] = encoderReaderAngVel(m2Raw, m2RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
//Calculate robot linear and angular velocity
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
//Get Control Commands
rem_speed_ref = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -0.35, 0.35);
rem_turn_speed_ref = floatMap(Ps3.data.analog.stick.lx, -128.0, 127.0, -3.75, 3.75);
if (balancingOn) {
// Speed Controller
SC_cont_out = PController(rem_speed_ref, vel_Matrix[0][0], K_SC);
// Balance controller
// Outer loop
OL_cont_out = PController((BALANCE_POINT - SC_cont_out), pitch, K_OL);
// Inner loop
ref_IL = OL_cont_out;
act_IL = pitch_rate;
error_IL = ref_IL - act_IL;
iError_IL = iError_IL + (dT_s * (error_IL * I_IL) + (IL_anti_windup * ((1 / I_IL) + (1 / K_IL))));
IL_cont_out = round((error_IL * K_IL) + iError_IL);
//Turn controller
TC_cont_out = PController(rem_turn_speed_ref, vel_Matrix[0][1], K_TC);
//Sum speed command for motors
M1_Speed_CMD = IL_cont_out - TC_cont_out;
M2_Speed_CMD = IL_cont_out + TC_cont_out;
//Motor control
IL_anti_windup = motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
IL_anti_windup = IL_anti_windup + motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
IL_anti_windup = IL_anti_windup / 2;
} else {
//Sum speed command for motors
speedCmd1 = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -1.0, 1.0);
M1_Speed_CMD = MOTOR_SATURATION * speedCmd1;
motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
speedCmd2 = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -1.0, 1.0);
M2_Speed_CMD = MOTOR_SATURATION * speedCmd2;
motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
}
//Update variables for next scan cycle
m1RawLast = m1Raw;
m2RawLast = m2Raw;
}
void ResetIntegrators() {
iError_IL = 0.0;
IL_anti_windup = 0.0;
}
float PController(float ref_, float act_, float k_) {
return (ref_ - act_) * k_;
}
float floatMap(int in, float inMin, float inMax, float outMin, float outMax) {
return (in - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
}
float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_) {
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_);
return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * filt_gain_);
}
float encoderReaderAngVel(int encRaw, int encRawLast, float ang_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_) {
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
float ang_vel_ = (dTurn_ * 2 * PI) / (dT_);
return ang_vel_filtered_ + ((ang_vel_ - ang_vel_filtered_) * dT_ * filt_gain_);
}
float motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) {
//Returns anti windup difference
//Calculate channel
byte ch2 = motorID * 2;
byte ch1 = ch2 - 1;
float windup = 0;
//Deadband
if (speedCMD_ > 0 && speedCMD_ < dbPos_) {
speedCMD_ = dbPos_;
} else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) {
speedCMD_ = -dbNeg_;
}
// Speed command saturation
else if (speedCMD_ > saturation) {
windup = saturation - speedCMD_;
speedCMD_ = saturation;
} else if (speedCMD_ < -saturation) {
windup = -saturation - speedCMD_;
speedCMD_ = -saturation;
} else {
speedCMD_ = speedCMD_;
}
//Apply speed command to PWM output
if (speedCMD_ > 0) {
ledcWrite(ch1, 0);
ledcWrite(ch2, speedCMD_);
} else if (speedCMD_ < 0) {
ledcWrite(ch1, -1 * speedCMD_);
ledcWrite(ch2, 0);
} else if (speedCMD_ == 0) {
ledcWrite(ch1, 0);
ledcWrite(ch2, 0);
}
return windup;
}