153 lines
4.9 KiB
C++
153 lines
4.9 KiB
C++
void initMotors() {
|
|
// Inverse Kinematic matrix of differential drive robot
|
|
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
|
|
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
|
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
|
|
inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
|
}
|
|
|
|
void motors() {
|
|
|
|
if (Ps3.data.button.cross) {
|
|
ResetIntegrators();
|
|
balancingOn = true;
|
|
}
|
|
|
|
if (Ps3.data.button.circle) {
|
|
balancingOn = false;
|
|
}
|
|
|
|
if (Ps3.data.button.triangle) {
|
|
ResetIntegrators();
|
|
}
|
|
|
|
if (Ps3.data.button.square) {
|
|
IMU.init();
|
|
}
|
|
|
|
//Calculate wheel angular velocity
|
|
motor_ang_vel[0][0] = encoderReaderAngVel(m1Raw, m1RawLast, motor_ang_vel[0][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
motor_ang_vel[1][0] = encoderReaderAngVel(m2Raw, m2RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
|
|
|
//Calculate robot linear and angular velocity
|
|
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
|
|
|
|
//Get Control Commands
|
|
rem_speed_ref = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -0.35, 0.35);
|
|
rem_turn_speed_ref = floatMap(Ps3.data.analog.stick.lx, -128.0, 127.0, -3.75, 3.75);
|
|
|
|
if (balancingOn) {
|
|
|
|
|
|
// Speed Controller
|
|
SC_cont_out = PController(rem_speed_ref, vel_Matrix[0][0], K_SC);
|
|
|
|
// Balance controller
|
|
// Outer loop
|
|
OL_cont_out = PController((BALANCE_POINT - SC_cont_out), pitch, K_OL);
|
|
// Inner loop
|
|
ref_IL = OL_cont_out;
|
|
act_IL = pitch_rate;
|
|
error_IL = ref_IL - act_IL;
|
|
iError_IL = iError_IL + (dT_s * (error_IL * I_IL) + (IL_anti_windup * ((1 / I_IL) + (1 / K_IL))));
|
|
IL_cont_out = round((error_IL * K_IL) + iError_IL);
|
|
|
|
|
|
//Turn controller
|
|
TC_cont_out = PController(rem_turn_speed_ref, vel_Matrix[0][1], K_TC);
|
|
|
|
//Sum speed command for motors
|
|
M1_Speed_CMD = IL_cont_out - TC_cont_out;
|
|
M2_Speed_CMD = IL_cont_out + TC_cont_out;
|
|
|
|
//Motor control
|
|
IL_anti_windup = motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
|
|
IL_anti_windup = IL_anti_windup + motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
|
|
IL_anti_windup = IL_anti_windup / 2;
|
|
|
|
} else {
|
|
|
|
//Sum speed command for motors
|
|
speedCmd1 = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -1.0, 1.0);
|
|
M1_Speed_CMD = MOTOR_SATURATION * speedCmd1;
|
|
motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
|
|
|
|
speedCmd2 = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -1.0, 1.0);
|
|
M2_Speed_CMD = MOTOR_SATURATION * speedCmd2;
|
|
motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
|
|
}
|
|
|
|
|
|
//Update variables for next scan cycle
|
|
m1RawLast = m1Raw;
|
|
m2RawLast = m2Raw;
|
|
}
|
|
|
|
void ResetIntegrators() {
|
|
iError_IL = 0.0;
|
|
IL_anti_windup = 0.0;
|
|
}
|
|
|
|
float PController(float ref_, float act_, float k_) {
|
|
return (ref_ - act_) * k_;
|
|
}
|
|
|
|
|
|
float floatMap(int in, float inMin, float inMax, float outMin, float outMax) {
|
|
return (in - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
|
|
}
|
|
|
|
float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_) {
|
|
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
|
|
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
|
|
float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_);
|
|
return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * filt_gain_);
|
|
}
|
|
|
|
float encoderReaderAngVel(int encRaw, int encRawLast, float ang_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_) {
|
|
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
|
|
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
|
|
float ang_vel_ = (dTurn_ * 2 * PI) / (dT_);
|
|
return ang_vel_filtered_ + ((ang_vel_ - ang_vel_filtered_) * dT_ * filt_gain_);
|
|
}
|
|
|
|
float motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) {
|
|
//Returns anti windup difference
|
|
//Calculate channel
|
|
byte ch2 = motorID * 2;
|
|
byte ch1 = ch2 - 1;
|
|
float windup = 0;
|
|
|
|
//Deadband
|
|
if (speedCMD_ > 0 && speedCMD_ < dbPos_) {
|
|
speedCMD_ = dbPos_;
|
|
} else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) {
|
|
speedCMD_ = -dbNeg_;
|
|
}
|
|
|
|
// Speed command saturation
|
|
else if (speedCMD_ > saturation) {
|
|
windup = saturation - speedCMD_;
|
|
speedCMD_ = saturation;
|
|
} else if (speedCMD_ < -saturation) {
|
|
windup = -saturation - speedCMD_;
|
|
speedCMD_ = -saturation;
|
|
} else {
|
|
speedCMD_ = speedCMD_;
|
|
}
|
|
|
|
//Apply speed command to PWM output
|
|
if (speedCMD_ > 0) {
|
|
ledcWrite(ch1, 0);
|
|
ledcWrite(ch2, speedCMD_);
|
|
} else if (speedCMD_ < 0) {
|
|
ledcWrite(ch1, -1 * speedCMD_);
|
|
ledcWrite(ch2, 0);
|
|
} else if (speedCMD_ == 0) {
|
|
ledcWrite(ch1, 0);
|
|
ledcWrite(ch2, 0);
|
|
}
|
|
|
|
return windup;
|
|
}
|