Balance controller is not working

This commit is contained in:
Stedd 2023-10-21 15:55:08 +02:00
parent c58b413392
commit 62e07ce32a
4 changed files with 104 additions and 80 deletions

View File

@ -45,18 +45,19 @@ const char* _ps3Address = "18:5e:0f:92:00:6c";
void setup() { void setup() {
//Initialize serial //Initialize serial
Serial.begin(57600); Serial.begin(19200);
delay(10); delay(10);
//Initialice I2C //Initialice I2C
Wire.begin(IMU_I2C_SDA, IMU_I2C_SCL); Wire.begin(IMU_I2C_SDA, IMU_I2C_SCL);
//delay(10); delay(10);
//Initialize IMU //Initialize IMU
Serial.println("Before IMU init"); Serial.println("Before IMU init");
IMU.init(); IMU.init();
//IMU.init();
Serial.println("After IMU init"); Serial.println("After IMU init");
delay(10); delay(10);
//Initialize encoder interrupts //Initialize encoder interrupts

30
IMU.ino
View File

@ -7,7 +7,7 @@ const int gyro_overflow_value = 4558; // 4096+512-50=4558 ?
//IMU VARIABLES //IMU VARIABLES
int ax, ay, az; int ax, ay, az;
int cx, cy, cz; int cx, cy, cz;
float gx, gy, gz; int gx, gy, gz;
float gt; float gt;
float acc_pitch; float acc_pitch;
float pitch_rate; float pitch_rate;
@ -16,30 +16,26 @@ float pitch_prev = 0;
void readIMU() { void readIMU() {
// Serial.println("ReadingIMU");
//Acceletometer //Acceletometer
int* accelerometerReadings = IMU.readFromAccelerometer(); ax = convertInt(IMU.accelerometer_x(IMU.readFromAccelerometer()), acc_overflow_value);
ax = convertInt(IMU.accelerometer_x(accelerometerReadings), acc_overflow_value); ay = convertInt(IMU.accelerometer_y(IMU.readFromAccelerometer()), acc_overflow_value);
ay = convertInt(IMU.accelerometer_y(accelerometerReadings), acc_overflow_value); az = convertInt(IMU.accelerometer_z(IMU.readFromAccelerometer()), acc_overflow_value);
az = convertInt(IMU.accelerometer_z(accelerometerReadings), acc_overflow_value);
//Magnetometer //Magnetometer
int* compassReadings = IMU.readFromCompass(); cx = IMU.compass_x(IMU.readFromCompass());
cx = IMU.compass_x(compassReadings); cy = IMU.compass_y(IMU.readFromCompass());
cy = IMU.compass_y(compassReadings); cz = IMU.compass_z(IMU.readFromCompass());
cz = IMU.compass_z(compassReadings);
// // Gyrocope // Gyrocope
// float* gyroReadings = IMU.readGyro(); gx = convertInt(IMU.gyro_x(IMU.readGyro()), gyro_overflow_value); // gx - Pitch rate
// gx = convertInt(IMU.gyro_x(gyroReadings), gyro_overflow_value); // gx - Pitch rate gy = convertInt(IMU.gyro_y(IMU.readGyro()), gyro_overflow_value); // gy - Roll rate
// gy = convertInt(IMU.gyro_y(gyroReadings), gyro_overflow_value); // gy - Roll rate gz = convertInt(IMU.gyro_z(IMU.readGyro()), gyro_overflow_value); // gz - Yaw rate
// gz = convertInt(IMU.gyro_z(gyroReadings), gyro_overflow_value); // gz - Yaw rate
// //Temperature sensor //Temperature sensor
// gt = IMU.temp(gyroReadings); gt = IMU.temp(IMU.readGyro());
// Pitch angle from accelerometer // Pitch angle from accelerometer

View File

@ -30,6 +30,7 @@ float OL_cont_out;
float ref_IL, act_IL, error_IL, IL_cont_out, iError_IL, IL_anti_windup; float ref_IL, act_IL, error_IL, IL_cont_out, iError_IL, IL_anti_windup;
float speedCmd1, speedCmd2; float speedCmd1, speedCmd2;
bool balancingOn = false;
//Matrices //Matrices
mtx_type motor_ang_vel[2][1]; mtx_type motor_ang_vel[2][1];
@ -47,61 +48,82 @@ void initMotors() {
void motors() { void motors() {
if (Ps3.data.button.cross) {
ResetIntegrators();
balancingOn = true;
}
//Calculate wheel angular velocity if (Ps3.data.button.circle) {
motor_ang_vel[0][0] = encoderReaderAngVel(m1Raw, m1RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); balancingOn = false;
motor_ang_vel[1][0] = encoderReaderAngVel(m2Raw, m2RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain); }
if (Ps3.data.button.triangle) {
ResetIntegrators();
}
if (balancingOn) {
//Calculate wheel angular velocity
motor_ang_vel[0][0] = encoderReaderAngVel(m1Raw, m1RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
motor_ang_vel[1][0] = encoderReaderAngVel(m2Raw, m2RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
//Calculate robot linear and angular velocity //Calculate robot linear and angular velocity
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix); Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
//Get Control Commands //Get Control Commands
rem_turn_speed_ref = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -3.75, 3.75); rem_turn_speed_ref = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -3.75, 3.75);
rem_speed_ref = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -0.35, 0.35); rem_speed_ref = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -0.35, 0.35);
// Speed Controller // Speed Controller
SC_cont_out = PController(rem_speed_ref, vel_Matrix[0][0], K_SC); SC_cont_out = PController(rem_speed_ref, vel_Matrix[0][0], K_SC);
// Balance controller // Balance controller
// Outer loop // Outer loop
OL_cont_out = PController((BALANCE_POINT - SC_cont_out), pitch, K_OL); OL_cont_out = PController((BALANCE_POINT - SC_cont_out), pitch, K_OL);
// Inner loop // Inner loop
ref_IL = OL_cont_out; ref_IL = OL_cont_out;
act_IL = pitch_rate; act_IL = pitch_rate;
error_IL = ref_IL - act_IL; error_IL = ref_IL - act_IL;
iError_IL = iError_IL + (dT_s * (error_IL * I_IL) + (IL_anti_windup * ((1 / I_IL) + (1 / K_IL)))); iError_IL = iError_IL + (dT_s * (error_IL * I_IL) + (IL_anti_windup * ((1 / I_IL) + (1 / K_IL))));
IL_cont_out = round((error_IL * K_IL) + iError_IL); IL_cont_out = round((error_IL * K_IL) + iError_IL);
//Turn controller //Turn controller
TC_cont_out = PController(rem_turn_speed_ref, vel_Matrix[1][0], K_TC); TC_cont_out = PController(rem_turn_speed_ref, vel_Matrix[0][1], K_TC);
//Sum speed command for motors
M1_Speed_CMD = IL_cont_out - TC_cont_out;
M2_Speed_CMD = IL_cont_out + TC_cont_out;
//Motor control
IL_anti_windup = motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
IL_anti_windup = IL_anti_windup + motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
IL_anti_windup = IL_anti_windup / 2;
//Sum speed command for motors } else {
M1_Speed_CMD = IL_cont_out - TC_cont_out;
M2_Speed_CMD = IL_cont_out + TC_cont_out;
//Sum speed command for motors //Sum speed command for motors
speedCmd1 = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -1.0, 1.0); speedCmd1 = floatMap(Ps3.data.analog.stick.ry, -128.0, 127.0, -1.0, 1.0);
M1_Speed_CMD = MOTOR_SATURATION * speedCmd1; M1_Speed_CMD = MOTOR_SATURATION * speedCmd1;
motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG); motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
speedCmd2 = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -1.0, 1.0); speedCmd2 = floatMap(Ps3.data.analog.stick.ly, -128.0, 127.0, -1.0, 1.0);
M2_Speed_CMD = MOTOR_SATURATION * speedCmd2; M2_Speed_CMD = MOTOR_SATURATION * speedCmd2;
motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG); motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
}
//Motor control
// IL_anti_windup = motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
// IL_anti_windup = IL_anti_windup + motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
// IL_anti_windup = IL_anti_windup / 2;
//Update variables for next scan cycle //Update variables for next scan cycle
m1RawLast = m1Raw; m1RawLast = m1Raw;
m2RawLast = m2Raw; m2RawLast = m2Raw;
} }
void ResetIntegrators() {
iError_IL = 0.0;
IL_anti_windup = 0.0;
}
float PController(float ref_, float act_, float k_) { float PController(float ref_, float act_, float k_) {
return (ref_ - act_) * k_; return (ref_ - act_) * k_;
} }

View File

@ -8,18 +8,20 @@ void plot() {
// Serial.print(" "); // Serial.print(" ");
// IMU // IMU
Serial.print ( "Pitch:" ); Serial.print("Pitch:");
Serial.println ( pitch ); Serial.println(pitch);
// Serial.print (" ");
// Serial.print ( "Accelerometer_Pitch:" ); // Serial.print("Accelerometer_Pitch:");
// Serial.print ( acc_pitch ); // Serial.println(acc_pitch);
// Serial.print (" ");
// Serial.print ( "," ); Serial.print("RollRate");
// Serial.println ( gz ); Serial.println(gz);
// Serial.print ( "," );
// Serial.println ( gt ); // Serial.print(",");
// Serial.print ( " " ); // Serial.println(gt);
// Serial.println ( acc_pitch);
// Serial.print(" ");
// Serial.println(acc_pitch);
// Remote control // Remote control
@ -43,20 +45,23 @@ void plot() {
// Serial.println(m2Raw); // Serial.println(m2Raw);
// Motors // Motors
// Serial.print("SpeedControllerOut:"); Serial.print("SpeedControllerOut:");
// Serial.print(SC_cont_out); Serial.println(SC_cont_out);
// Serial.print(" ");
// Serial.print("BalanceOLControllerOut:"); Serial.print("BalanceOLControllerOut:");
// Serial.print(OL_cont_out); Serial.println(OL_cont_out);
// Serial.print(" ");
// Serial.print("BalanceILControllerOut:"); Serial.print("BalanceILControllerOut:");
// Serial.print(IL_cont_out); Serial.println(IL_cont_out);
// Serial.print(" ");
Serial.print("AntiWindup:");
Serial.println(IL_anti_windup);
// Serial.print("SpeedCmd1:"); // Serial.print("SpeedCmd1:");
// Serial.println(speedCmd1); // Serial.println(speedCmd1);
// Serial.print(" "); // Serial.print(" ");
// Serial.print("M1_CMD:"); // Serial.print("M1_CMD:");
// Serial.print(M1_Speed_CMD); // Serial.println(M1_Speed_CMD);
// Serial.print(" "); // Serial.print(" ");
// Serial.print("SpeedCmd2:"); // Serial.print("SpeedCmd2:");
// Serial.println(speedCmd2); // Serial.println(speedCmd2);
@ -65,13 +70,13 @@ void plot() {
// Serial.println(M2_Speed_CMD); // Serial.println(M2_Speed_CMD);
// Serial.print("M1_Ang_Vel:"); // Serial.print("M1_Ang_Vel:");
// Serial.print(motor_ang_vel[0][0]); // Serial.println(motor_ang_vel[0][0]);
// Serial.print(" "); // Serial.print(" ");
// Serial.print("M2_Ang_Vel:"); // Serial.print("M2_Ang_Vel:");
// Serial.print(motor_ang_vel[0][1]); // Serial.println(motor_ang_vel[0][1]);
// Serial.print(" "); // Serial.print(" ");
// Serial.print("botLinVel:"); // Serial.print("botLinVel:");
// Serial.print(vel_Matrix[0][0]); // Serial.println(vel_Matrix[0][0]);
// Serial.print(" "); // Serial.print(" ");
// Serial.print("botAngVel:"); // Serial.print("botAngVel:");
// Serial.println(vel_Matrix[1][0]); // Serial.println(vel_Matrix[1][0]);