Turn controller
Moved encoder readers and inverse kinematic to execute first in motor function. Implemented turn controller. Cleaned up speed command variables.
This commit is contained in:
parent
54d2701460
commit
40ae950bb1
|
@ -4,7 +4,7 @@ const float BASE_WIDTH = 0.1837;
|
|||
const float WHEEL_DIAMETER = 0.0677;
|
||||
const float PULSES_PER_TURN = 1320.0;
|
||||
const float BALANCE_POINT = 0.05;
|
||||
const float SPEED_REFERENCE = 0.0;
|
||||
const float SPEED_REF = 0.00;
|
||||
const float DEADBAND_M1_POS = 90.0;
|
||||
const float DEADBAND_M1_NEG = 90.0;
|
||||
const float DEADBAND_M2_POS = 90.0;
|
||||
|
@ -13,49 +13,42 @@ const float DEADBAND_M2_NEG = 90.0;
|
|||
|
||||
//Tuning
|
||||
const float K_SC = 20.0;
|
||||
const float K_TC = 50.0;
|
||||
const float K_OL = 13.0;
|
||||
const float K_IL = 90.0;
|
||||
const float I_IL = 5.5;
|
||||
const float filter_gain = 15.0;
|
||||
const float K_IL = 85.0;
|
||||
const float I_IL = 5.25;
|
||||
const float filter_gain = 16.0;
|
||||
|
||||
|
||||
//Help variables
|
||||
float M1_Lin_Vel, M2_Lin_Vel;
|
||||
float M1_Ang_Vel, M2_Ang_Vel;
|
||||
float botLinVel , botAngVel ;
|
||||
int Speed_CMD, M1_Speed_CMD, M2_Speed_CMD;
|
||||
int M1_Speed_CMD, M2_Speed_CMD;
|
||||
float ref_SC, act_SC, error_SC, SC_cont_out;
|
||||
float ref_TC, act_TC, error_TC, TC_cont_out;
|
||||
float ref_OL, act_OL, error_OL, OL_cont_out;
|
||||
float ref_IL, act_IL, error_IL, iError_IL;
|
||||
|
||||
|
||||
float ref_IL, act_IL, error_IL, IL_cont_out, iError_IL;
|
||||
|
||||
|
||||
void initMotors() {
|
||||
// float temp[] = {WHEEL_DIAMETER / 4, WHEEL_DIAMETER / 4, (WHEEL_DIAMETER / 2) / BASE_WIDTH, -(WHEEL_DIAMETER / 2) / BASE_WIDTH};
|
||||
// int k = 0;
|
||||
// for (int i = 0; i < 2; i++)
|
||||
// {
|
||||
// for (int j = 0; j < 2; j++)
|
||||
// {
|
||||
// inv_Kin[i][j] = temp[k];
|
||||
// k = k + 1;
|
||||
// }
|
||||
// }
|
||||
|
||||
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
|
||||
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
||||
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
|
||||
inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
||||
|
||||
Matrix.Print((mtx_type*)inv_Kin, 2, 2, "Inverse kinematic matrix");
|
||||
}
|
||||
|
||||
void motors() {
|
||||
|
||||
|
||||
//Calculate wheel angular velocity
|
||||
motor_ang_vel[0][0] = encoderReaderAngVel(m1Raw, m1RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
motor_ang_vel[1][0] = encoderReaderAngVel(m2Raw, m2RawLast, motor_ang_vel[1][0], PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
|
||||
|
||||
//Calculate robot linear and angular velocity
|
||||
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
|
||||
|
||||
|
||||
// Speed Controller
|
||||
ref_SC = SPEED_REFERENCE;
|
||||
ref_SC = SPEED_REF;
|
||||
act_SC = vel_Matrix[0][0];
|
||||
error_SC = ref_SC - act_SC;
|
||||
SC_cont_out = error_SC * K_SC;
|
||||
|
@ -72,35 +65,19 @@ void motors() {
|
|||
act_IL = pitch_rate;
|
||||
error_IL = ref_IL - act_IL;
|
||||
iError_IL = iError_IL + (error_IL * dT_s * I_IL);
|
||||
Speed_CMD = round((error_IL * K_IL) + iError_IL);
|
||||
|
||||
M1_Speed_CMD = Speed_CMD;
|
||||
M2_Speed_CMD = Speed_CMD;
|
||||
|
||||
// M1_Speed_CMD = 500;
|
||||
// M2_Speed_CMD = 500;
|
||||
|
||||
//Calculate speed from encoders
|
||||
M1_Lin_Vel = encoderReaderLinVel(m1Raw, m1RawLast, M1_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
M2_Lin_Vel = encoderReaderLinVel(m2Raw, m2RawLast, M2_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
M1_Ang_Vel = encoderReaderAngVel(m1Raw, m1RawLast, M1_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
M2_Ang_Vel = encoderReaderAngVel(m2Raw, m2RawLast, M2_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
|
||||
|
||||
motor_ang_vel[0][0] = M1_Ang_Vel;
|
||||
motor_ang_vel[1][0] = M2_Ang_Vel;
|
||||
IL_cont_out = round((error_IL * K_IL) + iError_IL);
|
||||
|
||||
|
||||
//void MatrixMath::Multiply(mtx_type* A, mtx_type* B, int m, int p, int n, mtx_type* C)
|
||||
//{
|
||||
// A = input matrix (m x p)
|
||||
// B = input matrix (p x n)
|
||||
// m = number of rows in A
|
||||
// p = number of columns in A = number of rows in B
|
||||
// n = number of columns in B
|
||||
// C = output matrix = A*B (m x n)
|
||||
//Turn controller
|
||||
ref_TC = TURN_SPEED_REF;
|
||||
act_TC = vel_Matrix[0][1];
|
||||
error_TC = ref_TC - act_TC;
|
||||
TC_cont_out = error_TC * K_TC;
|
||||
|
||||
|
||||
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
|
||||
//Sum speed command for motors
|
||||
M1_Speed_CMD = IL_cont_out - TC_cont_out;
|
||||
M2_Speed_CMD = IL_cont_out + TC_cont_out;
|
||||
|
||||
|
||||
//Motor control
|
||||
|
@ -119,17 +96,17 @@ void motors() {
|
|||
// Serial.println(Speed_CMD * (100.0 / 4096.0));
|
||||
|
||||
|
||||
Serial.print("M1_Ang_Vel:");
|
||||
Serial.print(M1_Ang_Vel);
|
||||
Serial.print(" ");
|
||||
Serial.print("M2_Ang_Vel:");
|
||||
Serial.print(M2_Ang_Vel);
|
||||
Serial.print(" ");
|
||||
Serial.print("botLinVel:");
|
||||
Serial.print(vel_Matrix[0][0]);
|
||||
Serial.print(" ");
|
||||
Serial.print("botAngVel:");
|
||||
Serial.println(vel_Matrix[1][0]);
|
||||
// Serial.print("M1_Ang_Vel:");
|
||||
// Serial.print(M1_Ang_Vel);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("M2_Ang_Vel:");
|
||||
// Serial.print(M2_Ang_Vel);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("botLinVel:");
|
||||
// Serial.print(vel_Matrix[0][0]);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("botAngVel:");
|
||||
// Serial.println(vel_Matrix[1][0]);
|
||||
|
||||
|
||||
//Update variables for next scan cycle
|
||||
|
|
Loading…
Reference in New Issue