BalanceBot/Main/motorControl.ino

201 lines
6.2 KiB
C++

//Constants
const int MOTOR_SATURATION = round(pow(2, PWM_RESOLUTION));
const float BASE_WIDTH = 0.1837;
const float WHEEL_DIAMETER = 0.0677;
const float PULSES_PER_TURN = 1320.0;
const float BALANCE_POINT = 0.05;
const float SPEED_REFERENCE = 0.0;
const float DEADBAND_M1_POS = 90.0;
const float DEADBAND_M1_NEG = 90.0;
const float DEADBAND_M2_POS = 90.0;
const float DEADBAND_M2_NEG = 90.0;
//Tuning
const float K_SC = 20.0;
const float K_OL = 13.0;
const float K_IL = 90.0;
const float I_IL = 5.5;
const float filter_gain = 15.0;
//Help variables
float M1_Lin_Vel, M2_Lin_Vel;
float M1_Ang_Vel, M2_Ang_Vel;
float botLinVel , botAngVel ;
int Speed_CMD, M1_Speed_CMD, M2_Speed_CMD;
float ref_SC, act_SC, error_SC, SC_cont_out;
float ref_OL, act_OL, error_OL, OL_cont_out;
float ref_IL, act_IL, error_IL, iError_IL;
void initMotors() {
// float temp[] = {WHEEL_DIAMETER / 4, WHEEL_DIAMETER / 4, (WHEEL_DIAMETER / 2) / BASE_WIDTH, -(WHEEL_DIAMETER / 2) / BASE_WIDTH};
// int k = 0;
// for (int i = 0; i < 2; i++)
// {
// for (int j = 0; j < 2; j++)
// {
// inv_Kin[i][j] = temp[k];
// k = k + 1;
// }
// }
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
inv_Kin[1][1] = -(WHEEL_DIAMETER / 2) / BASE_WIDTH;
Matrix.Print((mtx_type*)inv_Kin, 2, 2, "Inverse kinematic matrix");
}
void motors() {
// Speed Controller
ref_SC = SPEED_REFERENCE;
act_SC = vel_Matrix[0][0];
error_SC = ref_SC - act_SC;
SC_cont_out = error_SC * K_SC;
// Balance controller
// Outer loop
ref_OL = BALANCE_POINT - SC_cont_out;
act_OL = pitch;
error_OL = ref_OL - act_OL;
OL_cont_out = error_OL * K_OL;
// Inner loop
ref_IL = OL_cont_out;
act_IL = pitch_rate;
error_IL = ref_IL - act_IL;
iError_IL = iError_IL + (error_IL * dT_s * I_IL);
Speed_CMD = round((error_IL * K_IL) + iError_IL);
M1_Speed_CMD = Speed_CMD;
M2_Speed_CMD = Speed_CMD;
// M1_Speed_CMD = 500;
// M2_Speed_CMD = 500;
//Calculate speed from encoders
M1_Lin_Vel = encoderReaderLinVel(m1Raw, m1RawLast, M1_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
M2_Lin_Vel = encoderReaderLinVel(m2Raw, m2RawLast, M2_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
M1_Ang_Vel = encoderReaderAngVel(m1Raw, m1RawLast, M1_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
M2_Ang_Vel = encoderReaderAngVel(m2Raw, m2RawLast, M2_Ang_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT_s, filter_gain);
motor_ang_vel[0][0] = M1_Ang_Vel;
motor_ang_vel[1][0] = M2_Ang_Vel;
//void MatrixMath::Multiply(mtx_type* A, mtx_type* B, int m, int p, int n, mtx_type* C)
//{
// A = input matrix (m x p)
// B = input matrix (p x n)
// m = number of rows in A
// p = number of columns in A = number of rows in B
// n = number of columns in B
// C = output matrix = A*B (m x n)
Matrix.Multiply((mtx_type*)inv_Kin, (mtx_type*)motor_ang_vel, 2, 2, 1, (mtx_type*)vel_Matrix);
//Motor control
motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG);
motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG);
// Serial plotter
// Serial.print("Balance_Point:");
// Serial.print(ref_OL);
// Serial.print(" ");
// Serial.print("Pitch_Angle:");
// Serial.print(act_OL);
// Serial.print(" ");
// Serial.print("Speed_CMD:");
// Serial.println(Speed_CMD * (100.0 / 4096.0));
Serial.print("M1_Ang_Vel:");
Serial.print(M1_Ang_Vel);
Serial.print(" ");
Serial.print("M2_Ang_Vel:");
Serial.print(M2_Ang_Vel);
Serial.print(" ");
Serial.print("botLinVel:");
Serial.print(vel_Matrix[0][0]);
Serial.print(" ");
Serial.print("botAngVel:");
Serial.println(vel_Matrix[1][0]);
//Update variables for next scan cycle
m1RawLast = m1Raw;
m2RawLast = m2Raw;
// Serial.print("m1Raw:");
// Serial.print(m1Raw);
// Serial.print(" ");
// Serial.print("m2Raw:");
// Serial.println(m2Raw);
}
float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) {
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_);
return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * filt_gain_);
}
float encoderReaderAngVel(int encRaw, int encRawLast, float ang_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) {
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
float ang_vel_ = (dTurn_ * 2 * PI) / (dT_);
return ang_vel_filtered_ + ((ang_vel_ - ang_vel_filtered_) * dT_ * filt_gain_);
}
void motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) {
//Calculate channel
byte ch1 = motorID * 2 - 1;
byte ch2 = motorID * 2;
//Deadband
if (speedCMD_ > 0 && speedCMD_ < dbPos_) {
speedCMD_ = dbPos_;
}
else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) {
speedCMD_ = -dbNeg_;
}
// Speed command saturation
else if (speedCMD_ > saturation) {
speedCMD_ = saturation;
}
else if (speedCMD_ < -saturation) {
speedCMD_ = -saturation;
}
else {
speedCMD_ = speedCMD_;
}
//Apply speed command to PWM output
if (speedCMD_ > 0) {
ledcWrite(ch1, 0);
ledcWrite(ch2, speedCMD_);
}
else if (speedCMD_ < 0) {
ledcWrite(ch1, -1 * speedCMD_);
ledcWrite(ch2, 0);
}
else if (speedCMD_ == 0) {
ledcWrite(ch1, 0);
ledcWrite(ch2, 0);
}
}