Cleanup and tuning
This commit is contained in:
parent
9c363bbe3c
commit
7dffe5208d
|
@ -11,7 +11,6 @@ int gx, gy, gz;
|
|||
float gt;
|
||||
float acc_pitch;
|
||||
float pitch_rate;
|
||||
float dAngle, estAngle;
|
||||
float pitch = 0;
|
||||
float pitch_prev = 0;
|
||||
|
||||
|
@ -48,8 +47,7 @@ void readIMU() {
|
|||
|
||||
|
||||
//Complementary filter
|
||||
dAngle = pitch_rate * dT_s;
|
||||
pitch = acc_pitch * (1 - alpha) + ((dAngle + pitch_prev) * alpha);
|
||||
pitch = acc_pitch * (1 - alpha) + (((pitch_rate * dT_s) + pitch_prev) * alpha);
|
||||
pitch_prev = pitch;
|
||||
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ float dT_s = 0.0;
|
|||
|
||||
//Motor variables
|
||||
const int PWM_CYCLE = 12000;
|
||||
const byte PWM_RESOLUTION = 12;
|
||||
const byte PWM_RES = 12;
|
||||
|
||||
|
||||
//Encoders variables
|
||||
|
@ -58,30 +58,31 @@ void setup() {
|
|||
//Initialize encoder interrupts
|
||||
initInterrupt();
|
||||
|
||||
|
||||
//Initialize encoders
|
||||
m1Raw = 0;
|
||||
m1RawLast = 100;
|
||||
m2Raw = 0;
|
||||
m2RawLast = 100;
|
||||
|
||||
|
||||
// Initialize PWM channels
|
||||
// byte pwmPins[4] = {M1_A, M1_B, M2_A, M2_B};
|
||||
// for(int i = 1; i >= 4; i++){
|
||||
// ledcAttachPin(pwmPins[i-1], i);
|
||||
// ledcSetup(i, PWM_CYCLE, PWM_RES);
|
||||
// }
|
||||
ledcAttachPin(M1_A, 1);
|
||||
ledcAttachPin(M1_B, 2);
|
||||
ledcAttachPin(M2_A, 3);
|
||||
ledcAttachPin(M2_B, 4);
|
||||
|
||||
ledcSetup(1, PWM_CYCLE, PWM_RESOLUTION);
|
||||
ledcSetup(2, PWM_CYCLE, PWM_RESOLUTION);
|
||||
ledcSetup(3, PWM_CYCLE, PWM_RESOLUTION);
|
||||
ledcSetup(4, PWM_CYCLE, PWM_RESOLUTION);
|
||||
|
||||
ledcSetup(1, PWM_CYCLE, PWM_RES);
|
||||
ledcSetup(2, PWM_CYCLE, PWM_RES);
|
||||
ledcSetup(3, PWM_CYCLE, PWM_RES);
|
||||
ledcSetup(4, PWM_CYCLE, PWM_RES);
|
||||
|
||||
//Initialize differential drive inverse kinematics
|
||||
initMotors();
|
||||
|
||||
|
||||
// Initialize Remote control
|
||||
initRemote();
|
||||
|
||||
|
@ -98,22 +99,18 @@ void loop() {
|
|||
readIMU();
|
||||
|
||||
|
||||
//Get remote control data
|
||||
readRemote();
|
||||
|
||||
|
||||
//Control motors
|
||||
motors();
|
||||
|
||||
|
||||
//Save time for next cycle
|
||||
tLast = tNow;
|
||||
|
||||
|
||||
// Plot
|
||||
plot();
|
||||
|
||||
|
||||
//Save time for next cycle
|
||||
tLast = tNow;
|
||||
|
||||
|
||||
//Delay
|
||||
delay(5); // only read every 0,5 seconds, 10ms for 100Hz, 20ms for 50Hz
|
||||
delay(5);
|
||||
}
|
||||
|
|
|
@ -1,37 +1,31 @@
|
|||
//Variables
|
||||
const byte NO_CHANNELS = 2;
|
||||
const byte CHANNEL_PINS[] = {12, 14};
|
||||
const int CH_MIN = 980;
|
||||
const int CH_MAX = 1997;
|
||||
const int INIT_VALUE = CH_MAX/2;
|
||||
float remoteRaw[NO_CHANNELS];
|
||||
float remoteCMD[NO_CHANNELS];
|
||||
|
||||
volatile unsigned int interruptTime_ch1, interruptTimeLast_ch1;
|
||||
volatile unsigned int interruptTime_ch2, interruptTimeLast_ch2;
|
||||
volatile unsigned int pwm_time_ch1, pwm_time_ch2;
|
||||
|
||||
|
||||
void ch1_interrupt() {
|
||||
void ch1_interrupt() {
|
||||
interruptTime_ch1 = micros();
|
||||
if (interruptTime_ch1 >interruptTimeLast_ch1 && (interruptTime_ch1 - interruptTimeLast_ch1)< 2100){
|
||||
pwm_time_ch1 = interruptTime_ch1 - interruptTimeLast_ch1;
|
||||
}
|
||||
|
||||
interruptTimeLast_ch1 = interruptTime_ch1;
|
||||
}
|
||||
}
|
||||
|
||||
void ch2_interrupt() {
|
||||
|
||||
void ch2_interrupt() {
|
||||
interruptTime_ch2 = micros();
|
||||
if (interruptTime_ch2 > interruptTimeLast_ch2 && (interruptTime_ch2 - interruptTimeLast_ch2)< 2100 ){
|
||||
pwm_time_ch2 = interruptTime_ch2 - interruptTimeLast_ch2;
|
||||
}
|
||||
interruptTimeLast_ch2 = interruptTime_ch2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void initRemote(){
|
||||
|
||||
//Ch1
|
||||
pinMode(CHANNEL_PINS[0], INPUT_PULLUP);
|
||||
attachInterrupt(digitalPinToInterrupt(CHANNEL_PINS[0]), ch1_interrupt, CHANGE);
|
||||
|
@ -39,31 +33,4 @@ void initRemote(){
|
|||
//Ch2
|
||||
pinMode(CHANNEL_PINS[1], INPUT);
|
||||
attachInterrupt(digitalPinToInterrupt(CHANNEL_PINS[1]), ch2_interrupt, CHANGE);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void readRemote(){
|
||||
|
||||
remoteCMD[0] = floatMap(pwm_time_ch1, 992.0, 2007.0, -2.5, 2.5); //turn rate
|
||||
remoteCMD[1] = floatMap(pwm_time_ch2, 982.0, 1997.0, -0.25, 0.25); //speed
|
||||
|
||||
// Remote control
|
||||
// Serial.print("ch1:");
|
||||
// Serial.print(pwm_time_ch1);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("ch2:");
|
||||
// Serial.print(pwm_time_ch2);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("ch1_mapped:");
|
||||
// Serial.print(remoteCMD[0]);
|
||||
// Serial.print(" ");
|
||||
// Serial.print("ch2_mapped:");
|
||||
// Serial.println(remoteCMD[1]);
|
||||
|
||||
}
|
||||
|
||||
|
||||
float floatMap(int in, float inMin, float inMax, float outMin, float outMax){
|
||||
return (in - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
//Constants
|
||||
const int MOTOR_SATURATION = round(pow(2, PWM_RESOLUTION));
|
||||
const int MOTOR_SATURATION = round(pow(2, PWM_RES));
|
||||
const float BASE_WIDTH = 0.1837;
|
||||
const float WHEEL_DIAMETER = 0.0677;
|
||||
const float PULSES_PER_TURN = 1320.0;
|
||||
|
@ -13,12 +13,12 @@ const float DEADBAND_M2_NEG = 90.0;
|
|||
|
||||
|
||||
//Tuning
|
||||
const float K_SC = 20.0;
|
||||
const float K_TC = 100.0;
|
||||
const float K_OL = 13.0;
|
||||
const float K_IL = 85.0;
|
||||
const float I_IL = 5.25;
|
||||
const float filter_gain = 16.0;
|
||||
const float K_SC = 18.0; //Speed controller gain
|
||||
const float K_TC = 130.0; //Turn controller gain
|
||||
const float K_OL = 14.0; //Outer loop balance controller gain
|
||||
const float K_IL = 85.0; //Inner loop balance controller gain
|
||||
const float I_IL = 5.25; //Inner loop balance controller Igain
|
||||
const float filter_gain = 16.0; //Motor speed LPF gain
|
||||
|
||||
|
||||
//Help variables
|
||||
|
@ -37,6 +37,7 @@ mtx_type inv_Kin [2][2];
|
|||
|
||||
|
||||
void initMotors() {
|
||||
// Inverse Kinematic matrix of differential drive robot
|
||||
inv_Kin[0][0] = WHEEL_DIAMETER / 4;
|
||||
inv_Kin[1][0] = (WHEEL_DIAMETER / 2) / BASE_WIDTH;
|
||||
inv_Kin[0][1] = WHEEL_DIAMETER / 4;
|
||||
|
@ -56,23 +57,17 @@ void motors() {
|
|||
|
||||
|
||||
// Remote control commands
|
||||
rem_turn_speed_ref = remoteCMD[0];
|
||||
rem_speed_ref = remoteCMD[1];
|
||||
rem_turn_speed_ref = floatMap(pwm_time_ch1, 992.0, 2007.0, -3.5, 3.5);
|
||||
rem_speed_ref = floatMap(pwm_time_ch2, 982.0, 1997.0, -0.25, 0.25);
|
||||
|
||||
|
||||
// Speed Controller
|
||||
// ref_SC = SPEED_REF;
|
||||
ref_SC = rem_speed_ref;
|
||||
act_SC = vel_Matrix[0][0];
|
||||
error_SC = ref_SC - act_SC;
|
||||
SC_cont_out = error_SC * K_SC;
|
||||
SC_cont_out = PController(rem_speed_ref, vel_Matrix[0][0], K_SC);
|
||||
|
||||
|
||||
// Balance controller
|
||||
// Outer loop
|
||||
ref_OL = BALANCE_POINT - SC_cont_out;
|
||||
act_OL = pitch;
|
||||
error_OL = ref_OL - act_OL;
|
||||
OL_cont_out = error_OL * K_OL;
|
||||
OL_cont_out = PController((BALANCE_POINT - SC_cont_out), pitch, K_OL);
|
||||
// Inner loop
|
||||
ref_IL = OL_cont_out;
|
||||
act_IL = pitch_rate;
|
||||
|
@ -82,11 +77,7 @@ void motors() {
|
|||
|
||||
|
||||
//Turn controller
|
||||
// ref_TC = TURN_SPEED_REF;
|
||||
ref_TC = rem_turn_speed_ref;
|
||||
act_TC = vel_Matrix[0][1];
|
||||
error_TC = ref_TC - act_TC;
|
||||
TC_cont_out = error_TC * K_TC;
|
||||
TC_cont_out = PController(rem_turn_speed_ref, vel_Matrix[0][1], K_TC);
|
||||
|
||||
|
||||
//Sum speed command for motors
|
||||
|
@ -110,6 +101,15 @@ void motors() {
|
|||
|
||||
}
|
||||
|
||||
float PController(float ref_, float act_, float k_){
|
||||
return (ref_-act_)*k_;
|
||||
}
|
||||
|
||||
|
||||
float floatMap(int in, float inMin, float inMax, float outMin, float outMax){
|
||||
return (in - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
|
||||
}
|
||||
|
||||
float encoderReaderLinVel(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, float dT_, float filt_gain_ ) {
|
||||
float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle]
|
||||
float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation]
|
||||
|
|
Loading…
Reference in New Issue