//Constants const int MOTOR_SATURATION = round(pow(2, PWM_RESOLUTION)); const float WHEEL_DIAMETER = 0.067708; const float PULSES_PER_TURN = 1320.0; const float BALANCE_POINT = -0.05; const float SPEED_REFERENCE = 0.0; const float DEADBAND_M1_POS = 90.0; const float DEADBAND_M1_NEG = 90.0; const float DEADBAND_M2_POS = 90.0; const float DEADBAND_M2_NEG = 90.0; //Tuning const float K_SC = 15.0; const float K_OL = 13.0; const float K_IL = 80.0; const float I_IL = 5.5; const float filter_gain = 15.0; //Help variables float M1_Lin_Vel, M2_Lin_Vel; int Speed_CMD, M1_Speed_CMD, M2_Speed_CMD; float ref_SC, act_SC, error_SC, SC_cont_out; float ref_OL, act_OL, error_OL, OL_cont_out; float ref_IL, act_IL, error_IL, iError_IL; void motors() { // Speed Controller ref_SC = SPEED_REFERENCE; act_SC = (M1_Lin_Vel + M2_Lin_Vel) / 2; error_SC = ref_SC - act_SC; SC_cont_out = (error_SC * K_SC); // Balance controller // Outer loop ref_OL = BALANCE_POINT - SC_cont_out; act_OL = pitch; error_OL = ref_OL - act_OL; OL_cont_out = (error_OL * K_OL); // Inner loop ref_IL = OL_cont_out; act_IL = pitch_rate; error_IL = ref_IL - act_IL; iError_IL = iError_IL + (error_IL * dT * pow(10, -6) * I_IL); Speed_CMD = round((error_IL * K_IL) + iError_IL); M1_Speed_CMD = Speed_CMD; M2_Speed_CMD = Speed_CMD; // M1_Speed_CMD = 0; // M2_Speed_CMD = 0; //Calculate speed from encoders M1_Lin_Vel = encoderReader(m1Raw, m1RawLast, M1_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT, filter_gain); M2_Lin_Vel = encoderReader(m2Raw, m2RawLast, M2_Lin_Vel, PULSES_PER_TURN, WHEEL_DIAMETER, dT, filter_gain); //Motor control motorControl(1, M1_Speed_CMD, MOTOR_SATURATION, DEADBAND_M1_POS, DEADBAND_M1_NEG); motorControl(2, M2_Speed_CMD, MOTOR_SATURATION, DEADBAND_M2_POS, DEADBAND_M2_NEG); // Serial plotter Serial.print("Balance_Point:"); Serial.print(ref_OL); Serial.print(" "); Serial.print("Pitch_Angle:"); Serial.print(act_OL); Serial.print(" "); Serial.print("Speed_CMD:"); Serial.println(Speed_CMD * (100.0 / 4096.0)); //Update variables for next scan cycle m1RawLast = m1Raw; m2RawLast = m2Raw; } float encoderReader(int encRaw, int encRawLast, float lin_vel_filtered_, float pulses_per_turn_, float wheel_diameter_, int dT_, float filt_gain_ ) { float dEnc_ = encRaw - encRawLast; //[Number of encoder pulses this cycle] float dTurn_ = dEnc_ / pulses_per_turn_; //[Amount wheel turned this cycle. 1 = full rotation] float lin_vel_ = (dTurn_ * wheel_diameter_ * PI) / (dT_ * 0.000001); return lin_vel_filtered_ + ((lin_vel_ - lin_vel_filtered_) * dT_ * 0.000001 * filt_gain_); } void motorControl(byte motorID, int speedCMD_, int saturation, float dbPos_, float dbNeg_) { //Calculate channel byte ch1 = motorID * 2 - 1; byte ch2 = motorID * 2; // Speed command saturation if (speedCMD_ > saturation) { speedCMD_ = saturation; } else if (speedCMD_ < -saturation) { speedCMD_ = -saturation; } //Deadband else if (speedCMD_ > 0 && speedCMD_ < dbPos_) { speedCMD_ = dbPos_; } else if (speedCMD_ < 0 && speedCMD_ > -dbNeg_) { speedCMD_ = -dbNeg_; } //Zero speed if input = 0 else if (speedCMD_ == 0) { speedCMD_ = 0; } else { speedCMD_ = speedCMD_; } //Apply speed command to PWM output if (speedCMD_ > 0) { ledcWrite(ch1, 0); ledcWrite(ch2, speedCMD_); } else if (speedCMD_ < 0) { ledcWrite(ch1, -1 * speedCMD_); ledcWrite(ch2, 0); } }